
Estimate age-weighted prevalence of wasting by MUAC
Source:R/prev-wasting-age-weighted-muac.R
mw_estimate_age_weighted_prev_muac.RdEstimates age‑weighted prevalence of wasting using MUAC. Accepts age in months or in categories ('6–23', '24–59'). The default is age in months.
The prevalence is weighted as: $$( prevalence_{6-23} + 2 \times prevalence_{24-59} ) / 3$$
Whilst the function is exported to users as a standalone, it is embedded into
the following major MUAC prevalence functions of this package:
mw_estimate_prevalence_muac(), mw_estimate_prevalence_screening(), and
mw_estimate_prevalence_screening2().
Usage
mw_estimate_age_weighted_prev_muac(
df,
muac,
has_age = TRUE,
age = NULL,
age_cat = NULL,
oedema = NULL,
raw_muac = FALSE,
...
)Arguments
- df
A
tibbleobject produced bymwanadata wranglers.- muac
A
numericorintegervector of raw MUAC values. The measurement unit should be millimetres.- has_age
Logical. Specifies whether the input dataset provides age in months or in categories ('6–23', '24–59'). Defaults to
TRUEwhen age is given in months.- age
A vector of class
doubleof child's age in months. Defaults to NULL. Only use ifhas_age = TRUE, otherwise set it toNULL.- age_cat
A
charactervector of child's age in categories. Code values should be "6-23" and "24-59". Defaults toNULL. Only use it ifhas_age = FALSE.- oedema
A
charactervector for presence of nutritional oedema. Code values should be "y" for presence and "n" for absence. Defaults to NULL.- raw_muac
Logical. Whether outliers should be excluded based on the raw MUAC values or MFAZ. For the former, set it to
TRUE, otherwiseFALSE. Defaults to MFAZ.- ...
A vector of class
character, specifying the categories for which the analysis should be summarised for. Usually geographical areas. More than one vector can be specified.
Value
A summary tibble with wasting prevalence estimates, as given by the
SMART updated MUAC tool (see references below).
References
SMART Initiative (no date). Updated MUAC data collection tool. Available at: https://smartmethodology.org/survey-planning-tools/updated-muac-tool/
Examples
## Example application when age is given in months ----
anthro.04 |>
mw_wrangle_age(age = age) |>
mw_wrangle_muac(
muac = muac,
.recode_muac = TRUE,
.to = "cm",
age = age,
sex = sex,
.recode_sex = FALSE
) |>
transform(muac = recode_muac(muac, "mm")) |>
mw_estimate_age_weighted_prev_muac(
muac = muac,
has_age = TRUE,
age = age,
age_cat = FALSE,
oedema = oedema,
raw_muac = FALSE,
analysis_unit
)
#> ================================================================================
#> # A tibble: 3 × 13
#> analysis_unit u2oedema u2sam u2mam u2gam o2oedema o2sam o2mam o2gam
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 Unit A 0 0.0368 0.121 0.158 0 0 0.0216 0.0216
#> 2 Unit B 0 0.0748 0.218 0.292 0 0.00665 0.0293 0.0359
#> 3 Unit C 0 0.0851 0.128 0.213 0 0.00617 0.0494 0.0556
#> # ℹ 4 more variables: sam_p <dbl>, mam_p <dbl>, gam_p <dbl>, N <int>
## Example application when age is given in categories ----
anthro.04 |>
transform(age_cat = ifelse(age < 24, "6-23", "24-59")) |>
mw_wrangle_muac(
muac = muac,
.recode_muac = FALSE,
.to = "none",
sex = sex,
.recode_sex = FALSE
) |>
mw_estimate_age_weighted_prev_muac(
has_age = FALSE,
age = NULL,
age_cat = age_cat,
oedema = oedema,
raw_muac = TRUE
)
#> Warning: Using `by = character()` to perform a cross join was deprecated in dplyr 1.1.0.
#> ℹ Please use `cross_join()` instead.
#> ℹ The deprecated feature was likely used in the mwana package.
#> Please report the issue at <https://github.com/mphimo/mwana/issues>.
#> # A tibble: 1 × 12
#> u2oedema u2sam u2mam u2gam o2oedema o2sam o2mam o2gam sam_p mam_p gam_p
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 0 0.0718 0.188 0.260 0 0.00747 0.0291 0.0366 0.0289 0.0823 0.111
#> # ℹ 1 more variable: N <int>